
4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

Licensed Memory in 32-Bit Windows
Vista

Though machines with 4GB are not yet the typical purchase for home or

business use, they are readily available from major manufacturers and it

won’t be long before they are the typical purchase. But there are problems.
You don’t have to stand for long in a computer shop to hear a sales assistant

talk of 4GB as some sort of limit for 32-bit operating systems, and it won’t
be long before this sales patter develops into outright promotion of 64-bit
Windows as the only way to get past this limit. Some sense of this can be

seen already in manufacturers’ advertising materials, as in the fol lowing fine
print from Dell:

The total amount of available memory will be less than 4GB. The amount

less depends on the actual system configuration. To fully utilise 4GB or more
of memory requires a 64-bit enabled processor and 64-bit operating system,

available on selected systems only.

Let me stress now that I do not complain about Dell’s statement. Its first
two sentences are correct for all 32-bit editions of Windows Vista exactly as

configured by Microsoft and installed by Dell. In the last sentence, I might
quibble that the talk of a 64-bit processor is superfluous since the machine

on offer does have such a processor, but otherwise the sentence is correct
because of the word fully. Yet although Dell’s statement is true, it is not the

whole truth: there is something that Microsoft does not tell you, and perhaps
does not tell Dell.

That 32-bit editions of Windows Vista are limited to 4GB is not because of

any technical constraint on 32-bit operating systems. The 32-bit editions of

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

Windows Vista all contain code for using physical memory above 4GB.
Microsoft just doesn’t license you to use that code.

Well, to say it that way is perhaps to put words in Microsoft’s mouth. I say

the restriction to 4GB is a licensing issue because that’s how Microsoft’s
programmers evidently have thought of it. The 4GB limit is retrieved from

the registry by calling a function named ZwQueryLicenseValue, which is itself
called from an internal procedure which Microsoft’s published symbol files
name as MxMemoryLicense. If you remove this check for the licensed

memory limit then a restriction to 4GB is demonstrably not enforced by
other means. Yet I must admit that I have not found where Microsoft says

directly that 32-bit Windows Vista is limited to 4GB only by licensing. The
supposed License Agreement doesn’t even mention the word memory. What,

really, is going on?

Demonstration

Put aside for now the fine print of what it means to “fully utilise” and ask
what’s even possible. Especially if you’re one of the many who believe that
32-bit operating systems can’t by definition use more than 4GB of RAM,

what do you expect to see for the System Properties in the original 32-bit
Windows Vista on a machine with 8GB of RAM? Click on the snapshot if you

want it full-size and hi-fi:

http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/ex/slmem/queryvalue.htm

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

No, this image is not a mock-up, though the red rectangle is my addition to

highlight that this 32-bit operating system which ordinarily finds only
3069MB of RAM on this machine seems happy to have 8189MB. Windows

will use all this memory, too, not that I have any ordinary need for it to do
so. The next picture is as much a record of my unimaginativeness as of 32-

bit Windows Vista actually using (very nearly) all the installed 8GB. An
entirely ordinary test program writes 1GB of data from a single memory
block to a file and reads the file back into that same memory block. That

takes a while, even on a fast machine. By the time that eight instances are
running concurrently, all the physical memory is in use:

http://www.geoffchappell.com/notes/windows/license/_images/system8189.png

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

Of course, there are contrivances and caveats. To get these pictures without

contrivance, you would need a license upgrade from Microsoft, which
Microsoft shows no sign of offering. The license data that would have to be

upgraded is protected in various ways from being tampered with, and I
certainly do not mean for anyone to try changing it, even for testing.

Instead, to simulate having new license data from Microsoft, I have modified
the kernel just enough so that it ignores the two license values that set
memory limits, and I have started Windows in Test Mode so that it tolerates

a kernel that no longer has Microsoft’s digital signature. Neither of these
steps is meant for general use. I am not solving for you the problem of how

to have 32-bit Windows Vista use all your 4GB or more of physical memory
without Microsoft’s permission. Neither am I saying that 32-bit Windows

Vista is a better (or worse) option than 64-bit for using all your 4GB of
memory. I am just demonstrating that despite what Microsoft and many

others say to the contrary, 32-bit Windows Vista actually can use all the RAM
that you can feasibly install. The code for doing it is already in the product
that Microsoft sells you. There is no need to bring in any code from a

different edition of Windows or to make 32-bit Windows Vista believe it is
anything other than 32-bit Windows Vista. All that needs to be changed are

two pieces of data whose sole purpose is to specify how much memory
Microsoft permits you to use. No code needs to be changed even by one

byte, but to prove this point I have to patch the code because Microsoft does
not permit changing the license data. If you want that this should work for

you without contrivance, then pester Microsoft for an upgrade of the license

http://www.geoffchappell.com/notes/windows/license/_images/taskmgr.png

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

data or at least for credible, detailed reasoning of its policy for licensing your
use of your computer’s memory in 32-bit Windows Vista.

As for caveats, you should know that although I study software, I do not

have the testing resources of a software or hardware manufacturer. I don’t
know of anything that misbehaves now that Windows finds all this memory

that it ordinarily overlooks, but I can’t swear that everything works correctly
in every detail. With one exception, my test installation is just the original
32-bit Windows Vista Ultimate from MSDN discs, with all Windows features

installed, but with no real-world additions of applications or drivers that
aren’t distributed with Windows or of devices that didn’t come with the

machine. Applications ought not matter, as argued below, but drivers may.
This is where my one exception comes from: some of my tests failed until I

updated the display driver (from NVIDIA). That’s as good a reminder as any
that when I say 32-bit Windows Vista has working code for using memory

above 4GB, I talk of what Microsoft has written for Windows, not of what
you add to your Windows installation from who knows where.

Still, even with contrivances and caveats, how can it be that I—or you after

following my directions if you want to test what I say—can get anywhere
near to producing such pictures? After all, for the page The system
memory that is reported in the System Information dialog box in Windows

Vista is less than you expect if 4GB of RAM is installed, Microsoft states
plainly that “for Windows Vista to use all 4GB of memory … an x64 (64-bit)

version of Windows Vista must be used.” The pictures above show just as
plainly that this statement by Microsoft cannot be entirely truthful. Even if

you’re perfectly happy to upgrade to 64-bit Windows Vista—and for all
you’re to know from reading this article, I’m among you on that point—I ask

that you focus on whether Microsoft is open and truthful, and on whether the
rest of the industry has been suitably vigilant and responsible. Even if you
don’t care about that for this issue, you may for another. The more that

technology companies get away with half-truths and the exploitation of
ignorance even on one issue, the more they can drift into it as their standard

practice.

What is the truth, then? When someone says some such thing as that 32-bit
Windows Vista is technically, physically, logicallly, architecturally,

fundamentally or otherwise incapable of using all your 4GB or more of RAM,
what can they mean?

There is already on the Internet and elsewhere an awful lot of rubbish to

read about this question. Hardly any of it would be worth citing even if I
didn’t want to spare the authors the embarrassment. A surprising number of

people who claim some sort of attention as expert commentators would have

http://support.microsoft.com/kb/929605
http://support.microsoft.com/kb/929605
http://support.microsoft.com/kb/929605

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

you believe that using more than 4GB of memory is mathematically
impossible for any 32-bit operating system because 2 to the power of 32 is

4G and a 32-bit register can’t form an address above 4GB. If nothing else,
these experts don’t know enough history: 2 to the 16 is only 64K and yet
the wealth of Microsoft is founded on a 16-bit operating system that from its

very first version was designed to use 640KB of RAM plus other memory in a
physical address space of 1MB. Some remember this history and add

seemingly plausible qualifications that exceeding 4GB is possible only at the
price of nasty hacks that require everyone—well, all programmers—to jump

through hoops. Fortunately, Intel’s processors are a lot more advanced than
the 8086 from all those years ago.

Physical Address Extension

Old hands may already have groaned at the preceding heading. The means
for a 32-bit operating system to use physical addresses above 4GB was built

into Intel’s 32-bit processors well over a decade ago1 and has been
supported by Microsoft since Windows 2000. If you haven’t heard of it, or

haven’t thought that it applies to Windows Vista, then one reason may be
that Microsoft has mostly advertised it only as a feature of the server

editions such as Windows 2000 Server and Windows Server 2003, and only
then for the more expensive levels with names like Enterprise and

Datacenter. However, even Windows 2000 Professional can be configured,
without contrivance, to access memory above 4GB by using Physical Address
Extension (PAE). This is old technology. It’s also widely and deeply

misunderstood technology, arguably more than any other in the history of
personal computing.

The essence of PAE is that the 32-bit registers used by 32-bit instructions in

a 32-bit operating system do not in practice address physical memory. This
is because of very old technology called paging. From at least as long ago as

Windows 3.0 Enhanced Mode established Windows as the operating system
to replace DOS, no software running on a 32-bit operating system (except

very early during system initialisation) gets to address memory directly. The
32-bit register with which a program or driver or the operating system itself

addresses memory holds what is called a linear address.2 The processor
translates linear addresses to physical addresses by looking through page

tables, which are configured by the operating system. The layout of linear
address space need have nothing to do with the layout of physical address
space. This is how a DLL, for instance, can be loaded at an address not far

below 2GB even on a machine that has only a few megabytes of RAM. Pages
are typically small, just 4KB each. Two neighbouring pages in linear address

space can come from opposite ends of physical memory. It’s all up to the

http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_1
http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_2

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

operating system’s memory manager and almost all of us take this paging
mechanism completely for granted.

For the 80386 in 1985, each page table entry (PTE) was 32 bits and allowed

for a 32-bit physical address. However, there is nothing fundamental to that.
What’s fundamental is only that every linear address must either map to a

physical address or be not-present. There is no reason at all that the linear
and physical address spaces must be the same size. With a suitably different
translation algorithm, the physical address space can be as big as Intel

wants to allow. This theoretical point, which I expect was appreciated at
Intel from the outset, got its real-world implementation in the P6 family of

processors, beginning with the Pentium Pro in 1995. Since then, with only
very few exceptions, Intel’s processors that are suitable for running 32-bit

Windows all have enough address lines for accessing 64GB of memory and
all support a translation algorithm for using all that memory in 32-bit code.

PAE is this alternative translation algorithm.

The practical outcome for 32-bit operating systems in general is that
although any one instruction can form addresses for only 4GB of linear

address space, those 4GB can be drawn together page by page from all over
any size of physical address space. For Windows in particular, the design is
that the linear address space changes for each process. In 32-bit Windows, a

process’s user-mode code is allowed between 2GB and 3GB of linear address
space (depending on the increaseuserva boot option), and the remainder of

the 4GB is reserved for use by kernel-mode code. Both 32-bit and 64-bit
Windows can use all of physical memory, including above 4GB, but a 32-bit

Windows application has at most 3GB of linear address space through which
to access any physical memory.

The difference between that and the “fully utiltise” in Dell’s fine print seems

very fine to me, especially while I don’t have any real-world applications that
need (or even use) as much as half a GB for each running instance. Until

software that uses memory by the gigabyte becomes common for ordinary
use outside of specialised contexts, this difference from full utility does not
of itself justify a rush to 64-bit operating systems—and certainly not of

disturbing a working, trusted installation of 32-bit Windows Vista. If you
have a 32-bit program that wants more than its 2GB or 3GB, then upgrading

to a 64-bit version of that program to run on a 64-bit operating system is
your only path ahead. If you’re buying a new computer and new

applications, then getting 64-bit Windows and 64-bit applications is
obviously the way of the future. Meanwhile, if your concern is only that the

system and all your 32-bit applications may together use all your 4GB or
more, then keeping your 32-bit operating system would at least be an option

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

for you if Microsoft would provide you with license data to let you “fully
utilise” the PAE support that Microsoft has already coded into the product.

PAE Is An Ugly Hack?

Some commentators seem to have trouble grasping the naturalness of a
physical address space that is larger than the linear address space. Perhaps

they have been distracted by paging’s historical role as technology for
dealing with a shortage of physical memory. Perhaps they have in mind the

history of MS-DOS, which was kept alive for many years with ever more
ways that programmers might write new code to access ever more memory
than the basic 640KB.

PAE is nothing like that. It is no more a concern to any software than is
paging. After all, it is nothing but a variant algorithm for paging. Just as
hardly any software is concerned that linear addresses are translated to

physical addresses, even less software is affected by how linear addresses
are translated to physical addresses. Application-level code and even most

system-level code is entirely unconcerned and unaffected. Except for the
operating system’s memory manager and for the relatively few drivers that

work with physical memory addresses, most notably for Direct Memory
Access (DMA), no 32-bit software needs any recoding to benefit from a

more-than-32-bit physical address space.

Even kernel-mode drivers don’t need to know anything specific to PAE, much
less be written specially to support it. All that’s required is a general

awareness that physical memory addresses may be wider than 32 bits and
that accommodation of this comes naturally from following the
documentation. Far from being an ugly hack, PAE requires pretty much

nothing of anyone. Indeed, to write a driver that misbehaves only when
memory is present above 4GB, you actually have to work at it, either by

programming artificially or by convincing yourself that you don’t need to do
all that the documentation spells out.

When working with physical memory addresses, device drivers need to do

64-bit arithmetic. This should be natural since Microsoft’s development kit
for device driver programming has recommended it for well over a decade,

including to define a 64-bit PHYSICAL_ADDRESS type that is used by all
functions that receive or return physical memory addresses. With only a few

highly contrived exceptions, any errors with a 32-bit driver’s handling of 64-
bit physical addresses, e.g., to discard the high 32 bits, are as much in error
if left unfixed in the same device’s 64-bit driver for 64-bit Windows.

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

For the particular matter of working with DMA, device drivers need to
conform to the long-documented functional requirements for setting up and

managing their DMA transfers. In particular, they need to be aware that the
DMA functions may succeed only partially, and need to be called again to
complete the request. The most significant, but not the only, reason for

partial success is that the necessary double buffers could not all be set up.
Double buffering is a technology for when a device cannot handle the full

range of possible physical memory addresses. For instance, an old type of
device (such as a floppy disk drive controller) may be limited to 24-bit

physical addresses. To get data from the controller to physical memory
above 16MB, the driver must use the DMA functions properly, so that the

controller actually reads to a double buffer below 16MB and the DMA
functions then copy the data to where it was wanted. A less old type of
device (such as an IDE controller) may be limited to 32-bit physical

addresses and will need double buffering in any operation that reads or
writes to memory above 4GB. Of course, most devices can handle 32-bit

physical addresses and increasingly many can handle 64-bit addresses.
Either way, their drivers are supposed to use the DMA functionality as if

double buffering may turn out to be needed. Some drivers for 32-bit
Windows assume that since all physical addresses fit 32 bits, their 32-bit

device needs no double buffering. They then take shortcuts with their use of
the DMA functions. If these drivers are not fixed, then using physical
memory above 4GB will expose the liberty that they have taken with the

documented coding model. Note that if the device can handle 32-bit physical
memory addresses but not 64-bit, then its driver needs to be fixed for 64-bit

Windows, too.

None of this is to say that drivers do not exist whose faults are exposed
when PAE enables use of memory above 4GB, or even that they never

existed in any significant number, but it is to say that the main types of fault
must be confronted in the development of a 64-bit driver for the same

device, so that retention of these faults in the contemporaneous 32-bit
driver is highly implausible. If you are worried that 32-bit Windows Vista

with PAE may be unsafe because of faulty 32-bit drivers (or inadequate
hardware, for that matter), then you would do well to wonder how 64-bit
Windows can be any less unsafe on the same machine.

PAE and Performance

Some commentators say that PAE comes at some hideous cost to

performance. Compared with the original algorithm that maps 32-bit linear
addresses to 32-bit physical addresses, PAE is slower. It has one extra level
to its page tables. Each PTE is twice as big. The operating system therefore

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

has more work to do when preparing and maintaining the page tables, and
since the Translation Lookaside Buffer (TLB) has only half the capacity,

memory references are more likely to miss the TLB and require additional
bus cycles. The reduction in performance is surely measurable. If you have
no need to access memory above 4GB and are concerned enough, then you

would not enable PAE. Note however that Microsoft does not regard this
performance cost as worth troubling over (as will be clear shortly, under the

heading Data Execution Prevention).

Of course, for access to memory above 4GB, the appropriate comparison is
not between using PAE and not, but between using PAE and using 64-bit

Windows. For this comparison, not only are the PTEs the same size but the
algorithms are very similar. To the processor, it’s PAE that is slightly simpler

and plausibly quicker, but the memory manager in a 64-bit operating system
can benefit from using 64-bit registers when working with the PTEs. These

are very fine trade-offs relative to the enormous overheads that embellish
some of the wilder misunderstandings of PAE on the Internet.

For a rough-and-ready assessment of these trade-offs, consider Microsoft’s

own performance measurement, as given by the Windows Experience Index.
Surely this is meant to have some objectivity, even if comparison of ratings
for 32-bit and 64-bit Windows may not be strictly fair. On this article’s test

machine, the “Memory (RAM)” component of the Windows Experience Index
is consistently 5.0 in 64-bit Windows Vista and is just as consistently 5.1 in

32-bit Windows Vista, whether PAE is enabled or not.

Choosing PAE

Whether the memory manager in the Windows kernel uses PAE is

configurable through the pae boot option. Indeed, 32-bit Windows Vista is
supplied with two kernels:

 an ordinary kernel which uses 32-bit PTEs without PAE, and has no

code for working with physical addresses above 4GB;
 a PAE kernel which uses 64-bit PTEs with PAE, and does have code for

working with physical addresses above 4GB.

The two kernels are respectively NTOSKRNL.EXE and NTKRNLPA.EXE, both in
the Windows System directory. The loader (WINLOAD.EXE) knows how to

set up the linear address space for mapping to physical addresses with or
without PAE, but each kernel is specialised to one algorithm for the mapping.

The pae option tells the loader which kernel to load.

http://www.geoffchappell.com/notes/windows/boot/bcd/osloader/pae.htm

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

Data Execution Prevention

If you have a modern machine of the sort that manufacturers are fitting with

4GB of RAM, then you very likely are running the PAE kernel already. This is
not so that you can use physical memory above 4GB, else this article would

not exist. It is instead to give you what Microsoft calls Data Execution
Prevention (DEP). This protects you from programs that try to execute data,
whether in error or from (suspected) malice. The connection with PAE is that

DEP depends on the NX bit that AMD has defined (and Intel adopted) in 64-
bit PTEs, such that DEP can only be enabled if PAE is also enabled. Because

Microsoft wants you to benefit from DEP, the typical practice of Windows
Vista is to select the PAE kernel if you haven’t specified that you want it and

even if you have specified that you don’t want it. (If your machine supports
DEP, then a necessary condition for disabling PAE is that you also disable

DEP by setting nx to AlwaysOff.)

Physical Memory Map

That you have 4GB of RAM does not mean that all physical memory

addresses from zero to 4GB actually do reach any RAM. In practice, much of
that range of physical address space, most likely at the top, is given over to

such things as the system BIOS and devices. You can get some sense of this
by starting the Device Manager, opening the View menu and asking to see

“Resources by type” or “Resources by connection” and then expanding
Memory. What this gives you, however, is at best only an indication. It tells

you that some addresses are used for devices. It doesn’t tell you which
addresses actually do have RAM (or ROM, for that matter).

The memory map that matters most for the question of what physical

memory the kernel can use is the map that the loader discovers from the
firmware. For machines whose firmware is a PC-compatible BIOS, the means
of discovery is int 15h function E820h.3 Unfortunately, the loader does not

save this map exactly as learnt from the BIOS, which complicates your
inspecting this memory map for yourself. However, Windows Vista

introduces some undocumented functions with which a kernel-mode driver
can get the map fresh from the BIOS. Such a driver for viewing the firmware

memory map is presented separately, along with a small console application
that reports the results. You will need administrative privilege to load the

driver.

Of particular interest once you have the firmware’s memory map for your
computer are the ranges that are reported as RAM. This article’s test

http://www.geoffchappell.com/notes/windows/boot/bcd/osloader/nx.htm
http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_3
http://www.geoffchappell.com/studies/windows/km/hal/api/x86bios/fwmemmap.htm
http://www.geoffchappell.com/studies/windows/km/hal/api/x86bios/fwmemmap.htm

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

machine has its 8GB of RAM in four ranges spread through 9GB of address
space:

Address Size Remarks

00000000`00000000 00000000`0009FC00
640KB of base RAM, less 1KB as
an Extended BIOS Data Area

00000000`00100000 00000000`BFD0AC00 not quite 3GB at 1MB

00000001`00000000 00000001`00000000 4GB at 4GB

00000002`00000000 00000000`40000000 1GB at 8GB

The first 3GB of physical address space has RAM in two ranges because
some is lost at the top of the first 1MB (for reasons of compatibility that go
all the way back to the original IBM PC) and some more is lost at the end of

the 3GB. The next 1GB is so much given over to device memory that instead
of wasting RAM at 3GB, hardware remaps the RAM from there to the end of

all other RAM, where it shows as the last of the ranges. The total amount of
addressable RAM in the first 4GB is 3,143,338KB, i.e., 3069MB and 682KB.

On this machine, with its present configuration of hardware, if the kernel is
limited to a physical address space of 4GB, then 3069MB (and the spare

change) is all the RAM that the kernel can possibly use. Get the kernel to
recognise physical addresses above 4GB, and it picks up the other 5GB, for a
total of 8189MB as shown in the picture.

If the 4th gigabyte were left at 3GB, Windows would have access only to as
much of it as does not get overridden. In practice, RAM might show through
in various gaps, so that the amount of RAM accessible below 4GB would be

more than 3GB but nowhere near 4GB. If you have exactly 4GB of RAM
installed, then getting the kernel to use physical addresses above 4GB will

be no benefit to you unless some of your 4GB of RAM is remapped above the
4GB address. Whether this remapping is done at present on your particular

machine can be checked by using the separately supplied driver. If it is not
done, then whether it can be arranged is an issue of hardware configuration.

Check your BIOS Setup, read your chipset manual, or consult your
computer’s manufacturer.

Of course, for a machine that has exactly 4GB of RAM and has 32-bit

Windows Vista pre-installed, you would expect that the manufacturer,
having been told by Microsoft that Windows will not see any RAM above
4GB, might not have configured any of the 4GB to be remapped out of sight

and into uselessness. You should not be surprised to find that remapping is
disabled. Worse, unless the manufacturer anticipates installing other

Windows versions on the machine, there is no incentive even to provide for

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

remapping above 4GB as something that you can configure if you want.
Indeed, it may even be that your chipset can’t handle physical memory

addresses that are wider than 32 bits. If so, then memory above 4GB isn’t
safe to use whatever your operating system (and you would hope your BIOS
does not even think to report that any such memory is present). If your

chipset does not support remapping, then RAM that is overridden for device
memory below 4GB will never be seen as usable RAM by 32-bit Windows

even with PAE enabled and is just as much lost to you if you install 64-bit
Windows.

License Values

How does it happen, then, that 32-bit Windows Vista is supplied with a PAE

kernel which is capable of using memory above 4GB but doesn’t actually use
any of that memory? Broadly speaking, there are two mechanisms by which
memory above 4GB does not get used. One is that the kernel never learns of

any such memory. The other is that the kernel knows the memory is there
but deliberately ignores it.

The first of these mechanisms comes about from a boot option, named

truncatememory, which tells the loader to discard all pages of physical
memory that are not wholly beneath some specified address. Thereafter, the

discarded memory may just as well never have been discovered from the
firmware. When the kernel receives the memory map from the loader, the

discarded memory is already (long) gone.

Of course, most people want all their computer’s memory to get used, and
so the truncatememory option is ordinarily not set (even by people who

know it exists). By the time the kernel receives the memory map from the
loader, the map has been much refined in order to account for how memory

is already in use, but it is otherwise intact.4 Very early during the kernel’s
initialisation, however, the kernel sets about its own filtering of this memory
map. Limits are applied both to the total amount of usable memory and to

the maximum physical address. Memory in excess of these limits is
discarded, such that it may as well never have been passed to the kernel

from the loader.5

Total Memory

The total amount of memory allowed is taken solely from the license value

Kernel-WindowsMaxMemAllowedx86, as read through the undocumented
function ZwQueryLicenseValue. The data for this value is a number of MB, so

http://www.geoffchappell.com/notes/windows/boot/bcd/library/truncatememory.htm
http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_4
http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_5
http://www.geoffchappell.com/notes/windows/license/install.htm

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

that 0x1000, which is installed for all 32-bit editions of Windows Vista,
means 4GB.

Maximum Address

The maximum physical address is calculated as the least of three values: a
license limit; a run-time limit; and a hard-coded limit.

For the ordinary kernel, the license value for the maximum physical address

is the same as for the total amount of memory, but the PAE kernel has a
separate license value, named Kernel-MaxPhysicalPage. Again, the data for

this value is a number of MB. Again, all 32-bit editions of Windows Vista are
installed with this value set to 0x1000, representing 4GB.

The run-time limit arises from needing to be sure that an array of MMPFN

structures can be set up to represent all the pages of physical memory, one
structure per 4KB page, from zero up to the maximum physical address. The

kernel’s capacity for such an array depends on how much of the linear
address space is already in use. This gives the run-time limit on the
maximum physical address. It is the size of the largest block of free linear

address space, divided by the size of an MMPFN structure (0x18 or 0x1C
bytes for the ordinary and PAE kernels, respectively), and then multiplied by

the page size.

The preceding calculation also produces an architectural limit on the use of
physical memory by 32-bit Windows with a PAE kernel. The largest block of

linear address space that is available even this early cannot be as large as
1GB and could be much smaller. Even if it is very nearly 1GB, that’s only

enough to fit an MMPFN array for a maximum physical address of 128GB
(given that the maximum should be a power of two). This limit is hard-coded

in the PAE kernel, as is 4GB for the non-PAE kernel.

For the question of whether the kernel in 32-bit Windows Vista will use all
the physical memory it learns about from the loader, the hard-coded limit of

4GB is dominant as the maximum address for the ordinary kernel, which
truly cannot form addresses for physical memory above 4GB, but the license
limit is dominant for the PAE kernel. If you have physical memory above

4GB and wonder how it can be that the PAE kernel does not use that
memory, the answer is licensing. The 32-bit code for using memory beyond

4GB is present in Windows Vista as Microsoft supplies it, but Microsoft
prepares license values in the registry so that this code never gets to work

with any physical addresses above 4GB.

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

Transparency

Microsoft is not exactly forward in describing this mechanism by which 32-bit

Windows Vista is restricted to 4GB. Especially notable is that the page
 Memory Limits for Windows Releases doesn’t mention the word license.

Some explanation may be that Microsoft takes licensing so much for granted
that it is simply left as understood that the stated limits on physical memory

are licensing limits.

For the page The system memory that is reported in the System
Information dialog box in Windows Vista is less than you expect if 4GB of

RAM is installed, Microsoft again does not admit that all the necessary code
for using memory above 4GB is present in the product, but does hint at it

when saying that “the 32-bit versions of Windows Vista limit the total
available memory” to protect users against incompatible drivers. Though no
drivers need to know the mechanics of PAE and only a small proportion work

at all with physical addresses, they may be indirectly incompatible with PAE
because they have been coded to an assumption that the physical address

space is the same size as the linear address space.

Accept for now that such incompatibilities with PAE have significant effects
for significantly many users, and this page of Microsoft’s is still disingenuous.

Of course, with DEP enabled as the typical Windows configuration (starting
with Windows XP SP2), Microsoft will have needed to limit Windows to the

first 4GB of physical address space so that the benefits of DEP are not blown
away by problems from third-party drivers that misbehave when memory is

present above 4GB. But Microsoft’s published reasoning would be satisfied
by arranging that enabling DEP not only enables PAE but also adds by
default a truncatememory option to stop the kernel from knowing of any

memory above 4GB. It does not of itself explain why the restriction to 4GB
has instead been implemented in a way that prohibits the use of memory

above 4GB by everyone, even at their own risk or when using computers
whose manufacturers test their machines and trust their drivers and are

willing to bear the support costs if they’re wrong.

Anyway, how significant could these incompatibilities be in real-world use of
Windows Vista? The drivers that Microsoft talks about are not the sort of

things that users install willy-nilly. They are much more the sort that come
installed with a new computer, such that they have been tested (or ought to

have been) by the manufacturer. They are also the sort of driver to which
Microsoft will not give a digital signature unless the driver passes Microsoft’s

testing at the Windows Hardware Quality Labs (WHQL). Add that Microsoft’s
Device Driver Kit (DDK) for writing device drivers has defined the

http://msdn.microsoft.com/library/aa366778.aspx
http://support.microsoft.com/kb/929605
http://support.microsoft.com/kb/929605
http://support.microsoft.com/kb/929605

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

PHYSICAL_ADDRESS type as 64 bits since at least Windows NT 4.0 and that
double-buffering into physical memory below 4GB has been supported since

Windows 2000, and you might be forgiven some incredulity that these
incompatibilities can now exist in any number, let alone that concern for
them explains the forcible crippling of new installations of 32-bit Windows

Vista on new computers.

Moreover, as noted earlier, the main types of coding error that are exposed
by using memory above 4GB on 32-bit Windows are as much a problem to

64-bit Windows. It would be not just incredible but implausible that these
errors are retained in 32-bit drivers that have been ported to 64-bit.

However significant may have been the problems of 32-bit drivers and
hardware for the safe use of memory above 4GB by 32-bit Windows in

earlier versions, the natural expectation must therefore be that they are
rapidly being eliminated from real-world occurrence by the widespread

adaptation of those drivers to support 64-bit Windows Vista. Add that any
hardware that won’t support 32-bit Windows with PAE won’t support 64-bit
Windows either, and it is a wonder that anyone, inside Microsoft or out, can

keep a straight face while saying that an upgrade to 64-bit Windows Vista is
obviously safe but enabling PAE on 32-bit Windows Vista (with up-to-date

drivers) just as obviously isn’t.

Even Microsoft looks to be uncertain of its ground when talking about these
incompatibilities. In the article just cited, which appears to be Microsoft’s

main explanation of why 32-bit Windows Vista in particular is limited to
using less than 4GB of memory, some paragraphs given as More Information

are not even relevant to the question of using memory above 4GB. It simply
does not matter that “DEP may cause compatibility issues” with any driver

let alone with any “that performs code generation or that uses other
techniques to generate executable code in real time.” A problem from such a
driver is resolved by disabling DEP, with no effect on using memory above

4GB. Why is that paragraph even present on Microsoft’s page, if not to
suggest a greater weight of argument to casual or uninformed readers?

Another paragraph that Microsoft presents as More Information is even

worse. It talks of drivers that directly modify the page tables and “cause
system instability” because they “expect 32-bit page table entries but

receive 64-bit PTEs in PAE mode instead.” Put aside that you, as a security-
minded user, ought not want (and hopefully don’t have) such drivers

executing on your system even when you have 32-bit PTEs. Consider instead
that these drivers will likely do the same mischief when PAE is enabled just

for DEP. The PTEs are still 64-bit even if they never hold a physical address
above 4GB. These errant drivers will still miscalculate the location of every
PTE that they want to modify. If fear of this is an argument against using

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

memory above 4GB, then it is just as much an argument against enabling
DEP (which Microsoft recommends should always be enabled).

As Microsoft’s technical arguments for limiting 32-bit Windows Vista to 4GB

of physical address space, these are strikingly poor in quality. They look
more like the sort of arguments someone might pass off to rationalise a

decision made on other grounds.

A Marketing Ruse

Perhaps the following, from Pushing the Limits of Windows: Physical

Memory by Mark Russinovich at a Microsoft website, ends with a more frank
description of Microsoft’s thinking about this 4GB limit than can be found in

anything written directly by Microsoft:

Because device vendors now have to submit both 32-bit and 64-bit drivers
to Microsoft's Windows Hardware Quality Laboratories (WHQL) to obtain a

driver signing certificate, the majority of device drivers today can probably
handle physical addresses above the 4GB line. However, 32-bit Windows will
continue to ignore memory above it because there is still some difficult to

measure risk, and OEMs are (or at least should be) moving to 64-bit
Windows where it's not an issue.

See that the difficult-to-measure risk is merely asserted despite an

acknowledgement that it seems implausible for new computers. As with
Microsoft’s own literature, no comment is ventured about why this particular

risk, among all the things that can go wrong with drivers, is so special that it
must be handled as a licensing matter rather than letting users and

manufacturers choose for themselves if they trust their hardware and
drivers. It has the look of providing cover for moving consumers to 64-bit

Windows faster than they might otherwise go. Just accept it without
question and be glad for the new business as consumers install 64-bit
Windows and start buying 64-bit applications. Who in the computer

industry—whether a manufacturer of hardware or software, or even a
commentator whom some might think is an independent analyst—is going to

criticise Microsoft for a sleight of hand that brings forward a cycle of
upgrades!

Windows With The Lot?

There is much that’s unsatisfactory about Microsoft’s hand-waving over
imposing a 4GB limit to 32-bit Windows Vista. If nothing else, when

consumers pay for a software product in an edition that the manufacturer

http://blogs.technet.com/markrussinovich/archive/2008/07/21/3092070.aspx
http://blogs.technet.com/markrussinovich/archive/2008/07/21/3092070.aspx

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

describes as Ultimate, they surely have a reasonable expectation that the
software is licensed to do everything that its code is capable of. If you buy

only the Home Basic edition instead of Home Premium, you expect to get
less software and be licensed to use fewer features. Surely the point to an
edition that is called Ultimate is that you get the whole package and are

licensed to use it all. If you pay the extra for Ultimate but you’re not licensed
for everything that the software can do, then how is Ultimate ultimate?

Note that this is not a case of a manufacturer puffing up a product

description. The complaint is not that Ultimate isn’t truly ultimate because it
isn’t the last word in what naive consumers might imagine Ultimate could be

if only Microsoft would write the code. It’s that Ultimate deliberately is not
given the ultimate license to do all that its code is already capable of.

Anti-Competitive Practices

By licensing Windows Vista only for memory below 4GB, Microsoft
suppresses competition in the subsidiary market of computers that run

Windows Vista. Given that Windows Vista is the current representative of a
monopoly product, this suppression may count as an anti-competitive

practice in terms of some jurisdictions’ laws on monopolistic abuses. If 32-
bit Windows could not use physical memory above 4GB because it has no

code for using PAE, there would be no possible competition to suppress, and
no possible grounds for complaint. Instead, since Windows actually does
have code for using PAE, the manufacturers of peripheral devices, the

programmers of the corresponding device drivers and the assemblers of
computers could have competed among one another on whether their wares

have the higher quality that Microsoft itself says is expected of 32-bit drivers
for safe use of physical memory above 4GB.

An irony is that the very same driver incompatibilities that Microsoft talks of

as a danger to users would surely have been eliminated—long ago—by the
natural forces of competition among driver developers and device

manufacturers had such competition not been stifled. Instead, Microsoft for
many years misled those developers and manufacturers to believe that the

32-bit client editions of Windows were not enabled for PAE when in fact they
were (see below, in the section titled Past).

Though Microsoft may not have benefited directly from suppressing

competition in the driver market, consumers have evidently not benefited at
all. Especially while 64-bit Windows Vista was not so readily available, very
many consumers bought computers with 4GB of RAM but not the whole use

of that RAM. True, they will have proceeded with their purchase despite

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

having seen the fine print that informed them of the loss, but they weren’t
fully informed, and they arguably have been misinformed about the reason

that all their RAM can’t be used.

You May Not Test What We Say

Especially unsatisfactory is that Microsoft says something about its product,

and about other people’s products, but uses the licensing mechanism to
deny the means to test what’s said. Whatever you think of software

licensing, in general or as practised particularly by Microsoft, its use by any
software manufacturer to frustrate independent testing of that
manufacturer’s claims about a consumer product is low.

When Microsoft and others make out that defective drivers are so
widespread and dangerous that 32-bit Windows Vista cannot be allowed to
use memory above 4GB even as a configurable option, how is anyone to

know the truth of it? Nobody can test even one driver’s use of memory
above 4GB on 32-bit Windows Vista with the license data that Microsoft

supplies for it. The closest that anyone can come is to test with 32-bit
Windows Server 2008, which hardly any consumers ever get to see, and

which of course was not available until some time after Windows Vista was
first released. It is no credit to the computer industry that any

manufacturer’s arguments are accepted so widely without independent
testing.

Testing the Use of Physical Memory Above
4GB

Even to begin to test whether a particular installation of 32-bit Windows

Vista cannot safely use memory above 4GB because of driver
incompatibilities, you must somehow side-step the two relevant license
values.6 For this purpose, it is enough just to modify the kernel so that

where it presently reads the two relevant license values from the registry, it
will instead proceed as if the license values had no effect.

Let me stress that although I have to modify the kernel, using memory

above 4GB does not require a change to even one byte of code in 32-bit
Windows Vista. That I modify any code here is merely to simulate the

provision of different license data by Microsoft. Much as you can buy
Windows Vista Home Basic and then upgrade to Home Premium without

having to reinstall Windows, you might upgrade to a configuration in which
the two license values for memory limits are raised. Because Microsoft

protects those license values, this patch is as close to that upgrade as can

http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_6

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

be arranged unless Microsoft makes the license upgrade available. If you
patch the kernel and your tests then show to your satisfaction that your

drivers are safe (though perhaps only after you disable defective drivers and
install the latest updates from their manufacturers), then a license upgrade
from Microsoft is what I intend you to seek.

You should understand now, i.e., before you get further involved, that
patching the kernel presents some difficulties in excess of patching an
application-level executable. Not only will you need a program with which to

change a few bytes in the executable code, you will also need programming
tools either to set the checksum in the executable’s header or to sign code.

Patch Details

The only executable that is considered here is the PAE kernel, named
NTKRNLPA.EXE, from 32-bit editions of Windows Vista (and Windows 7,

which may as well be a Windows Vista service pack as far as concerns this
article’s subject). The known builds have a routine named MxMemoryLicense

in which there are two sequences of nearly identical code, one for each
relevant license value. Each sequence calls the undocumented function

ZwQueryLicenseValue and then tests for failure or for whether the data that
has been read for the value is zero. In the known builds, each sequence has

the following instructions in common:

Opcode Bytes Instruction

7C xx jl default

8B 45 FC mov eax,dword ptr [ebp-4]

85 C0 test eax,eax

74 yy je default

At the time of executing, the eax register holds the status code from
ZwQueryLicenseValue. The first instruction is the test for failure (indicated
by a negative status code). The remaining instructions test whether the

retrieved data is zero. In the known builds, the xx and yy placeholders are
0x11 and 0x0A respectively for the first sequence and 0x10 and 0x09 for the

second, but even with the placeholders left unresolved, the sequence shown
occurs just twice in the whole kernel. This may help you find the patch sites

even if you have a different build (such as you may have picked up from
Windows Update).

Both occurrences are to be patched the same way. The patch is designed to

vary the ordinary execution as little as possible. The kernel is left to call
ZwQueryLicenseValue as usual and to test for failure, but the last three of

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

the above instructions are changed so that the kernel proceeds as if the
retrieved data is the value that represents 128GB (which is the least value

that removes licensing from the kernel’s computation of maximum physical
address). Change the 7 bytes starting from 0x8B so that you now have the
following instructions:

Opcode Bytes Instruction

B8 00 00 02 00 mov eax,00020000h

90 nop

90 nop

The following table lists the known English-language builds of the PAE kernel
and gives the file offsets for the two patch sites:

Version Package File Offsets

6.0.6000.16386 Windows Vista 0x003040B1, 0x003040F2

6.0.6001.18000 Windows Vista SP1 0x00309AA3, 0x00309AE4

6.0.6002.18005 Windows Vista SP2 0x0030C43A, 0x0030C47B

6.1.7600.16385 Windows 7 0x0035C243, 0x0035C283

For the remainder of these directions, I assume that your patched copy is
named NTKR128G.EXE.

Checksum

For all executables that are loaded by WINLOAD, as is the kernel, the
checksum in the executable’s header must be set correctly. Since patching

the kernel will almost certainly have invalidated this stored checksum, you
need to reset it. Signing the code, as discussed under the next heading, will

do this. If you don’t have tools for signing code, then a suitable tool for
setting the checksum is EDITBIN from Microsoft Visual Studio. Its /release
switch exists solely to set the checksum. The command to run is

editbin /release ntkr128g.exe

Digital Signature

It is sometimes said that kernel-mode drivers are not checked for digital
signatures in 32-bit Windows Vista, or more accurately that although hashes

are computed, drivers are not rejected if the hash is not validated by a
signature.7 Although this is broadly true, there are a dozen executables that

http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_7

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

the loader ordinarily insists be signed properly. The kernel is one of them, of
course. It must be signed by a certificate that derives from one of a handful

of root certficates whose public keys are hard-coded into the loader. Since
patching the kernel will have invalidated Microsoft’s signature, you have to
resort to one of the exceptions that are covered by the word “ordinarily”

(unless you want to patch the loader too).

One of these exceptions is a Test Mode which Microsoft provides so that
drivers can be tested during development. Presumably, this Test Mode also

lets Microsoft’s own kernel programmers get their kernel tested while it is
still being worked on and is not ready for a proper signature. In patching the

kernel to test what will appear to you to be a new kernel-mode feature, you
are in essentially the same position, though on a much smaller scale, as

Microsoft’s own kernel programmers when they have changed the kernel. In
this sense, the Test Mode is the most appropriate way around the digital

signature.

In Test Mode, the loader relaxes its integrity checking such that any root
certificate is accepted.8 Provided that you have suitable tools, you can

create your own test-signing certificate and test-sign your modified copy of
the kernel, such that it will load when you boot Windows with the testsigning
option. There is a price however: Test Mode has the detraction of placing

small warnings on the desktop.

For suitable tools, with documentation, look in either the Windows Software
Development Kit (SDK) or the Windows Driver Kit (WDK). To make your own

certificate, run some such command as

makecert -r -ss my -n "CN=My Own Testing Authority"

This creates a root certificate for an invented certification authority named
My Own Testing Authority and installs it in the Personal certificate store,

which is represented by “my” in the command. You can view the new
certificate by starting the Certificate Manager (CERTMGR.MSC), which also

lets you set a Friendly Name for the certificate if you want to keep it. To sign
your modified kernel with this certificate, run the command

signtool sign -s my -n "My Own Testing Authority" ntkr128g.exe

Note that you do not need administrative privilege for these steps. Also, you

can self-sign the kernel on one machine but test it on another. There is no
need to transfer the certificate to the test machine. Indeed, there is no more
need to keep the certificate. You can delete it from the Personal store either

http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_8

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

through the user interface of the Certificate Manager or by running the
command

certmgr -del -c -s my -n "My Own Testing Authority"

Booting the Self-Signed Patched Kernel

You now have a modified kernel with which to test your 32-bit Windows
Vista for its use of physical memory above 4GB. Copy it to the Windows

System directory of the machine that you will test. (For this, you typically
will need administrative privilege for the target machine.) Then, provided
that you successfully self-signed the kernel, you have to restart that

machine with three boot options:

 pae, set to ForceEnable to be sure of enabling PAE;
 kernel, set to NTKR128G.EXE so that Windows will start with your

patched kernel;
 testsigning, so that the loader will accept your self-signed kernel.

Persistent Test Mode

To set up a persistent test, use the BCDEDIT utility to write the options into
the BCD store. It is prudent to work on a copy of the configuration that you
want to test. Assuming that you are currently booted into this configuration,

running the command

bcdedit /copy {current} /d "Windows Vista Using All My Memory"

will create a new entry for the boot menu and tell you a GUID which you
then reproduce (e.g., by a copy and paste) in the commands:

bcdedit /set {guid} pae ForceEnable

bcdedit /set {guid} kernel ntkr128g.exe

bcdedit /set {guid} testsigning on

When you restart the computer, select “Windows Vista Using All My Memory”
from the boot menu, and start testing. If you do turn out to have a defective

driver and need to identify it and update it, then you can go through any of
the usual processes of elimination even while starting in Test Mode. Note in
particular that Test Mode is not Safe Mode. You can have the two together.

While “Windows Vista Using All My Memory” is selected at the boot menu,
just press F8 to open the Advanced Boot Options Menu and then select Safe

Mode.

One-Time Test Mode

http://www.geoffchappell.com/notes/windows/boot/bcd/osloader/kernel.htm
http://www.geoffchappell.com/notes/windows/boot/advancedoptions.htm

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

If you already have an operating system configuration that has PAE enabled,
then a less intrusive way to start your tests is to enter the options at the

Edit Boot Options Menu. This is admittedly a lot easier if your machine is
already configured for booting multiple operating systems (or the one
operating system in multiple configurations) so that you ordinarily see a boot

menu during startup. At this boot menu, select the configuration that you
want to test, then press F10 to open the Edit Boot Options Menu. It is too

late to enable PAE here, but the other options can be added in the style of
BOOT.INI switches:

/kernel=ntkr128g.exe /testsigning

Press Enter, and the selected operating system will start with your modified
kernel in Test Mode. This method has the advantage of not changing the
selected operating system in any way that lasts, and the corresponding

disadvantage that you have to type something every time you want to do
the test.

Booting the Patched Kernel With a Bad Signature

The patched kernel can also be booted by disabling the loader’s integrity
checking altogether. You cannot set this up entirely with boot options in the

BCD store, because the option to disable integrity checking is not permitted
to persist. The closest you can get is to disable integrity checking at one or
other of the boot menus.

Prepare a boot entry with just the pae and kernel options as above. When
you restart the computer, select “Windows Vista Using All My Memory” but
press F8 to open the Advanced Boot Options Menu and then select Disable

Driver Signature Enforcement.

The alternative with the Edit Boot Options Menu is also available, with the
same constraints about PAE being already enabled, but the switches to enter

are now:

/kernel=ntkr128g.exe /disable_integrity_checks

Curiously enough, booting with integrity checking disabled leaves no
warnings on the desktop (such as you get from booting in Test Mode). I do

not mean to recommend this method of testing. I describe it only for
completeness and because it is the only method available if you do not have

tools for code-signing, which are relatively new from Microsoft, but are able
to set an executable’s checksum.

http://www.geoffchappell.com/notes/windows/boot/editoptions.htm

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

Past

Although this article is motivated by the realisation that Microsoft introduced

a formal scheme of license values, two of which stop 32-bit Windows Vista
from using memory above 4GB, a few words might usefully be passed about

earlier Windows versions.

As noted above, the PAE kernel dates from Windows 2000. Some sources,
including Microsoft’s Physical Address Extension, seem to think that the

PAE kernel was only for server editions, at least initially. As recently as the
January 2007 edition of the MSDN Library on CD, this page of Microsoft’s

cited just three “systems that can use PAE to take advantage of physical
memory beyond 4GB”:

 Windows Server 2003, Enterprise Edition

 Windows 2000 Datacenter Server
 Windows 2000 Advanced Server

That was very definitely too small a list, but was surely more about what

was intended than what actually was coded and released (if not formally
supported). There are two PAE kernels on the installation media for every

known release of Windows 2000, Windows XP and Windows Server 2003
(except for Windows 2000 SP2 which seems not to have updated the kernel
at all). These each have four kernels:

 NTOSKRNL.EXE, single-processor, without PAE;
 NTKRNLMP.EXE, multi-processor, without PAE;
 NTKRNLPA.EXE, single-processor, with PAE;

 NTKRPAMP.EXE, multi-processor, with PAE.

In practice, Windows is installed with just two kernels, according to whether
the machine has one (logical) processor or more. The single-processor

kernels have the standard names. The multi-processor kernels are renamed
at installation.

As noted above, the kernel in Windows Vista limits memory use by filtering

the map of physical memory as received from the loader, so that memory in
excess of the limits is discarded before the kernel really starts working with

the map. This mechanism dates from at least Windows 2000. At first, there
was just the one limit, of total physical memory. A limit on the maximum

physical address begins (chronologically) with Windows Server 2003. What’s
new for Windows Vista is that the limits to memory usage are obtained as

data from the registry, using functions whose names make it unarguable

http://msdn.microsoft.com/library/aa366796.aspx

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

that the discarding of memory in excess of the limits is a licensing issue. In
earlier versions than Windows Vista, the memory limits are hard-coded and

the connection with licensing is only indirect.

These hard-coded limits are selected according to the product suite, mostly,
but sometimes with an extra dependence on something that Microsoft calls

4GT (and is mostly a matter of whether /3GB is given in the BOOT.INI
options). The following table of these limits is taken from the single-
processor NTKRNLPA.EXE in each release. There may be errors in

transcription, there being only so much time that I am willing to take over
finding every last detail for this information. If you want more detail or

reliability, try finding it from Microsoft.9

Version Package
Total Physical

Memory
Maximum Physical

Address

5.0.2195.1
Windows
2000 32GB if Datacenter

without 4GT;
16GB if Datacenter

with 4GT;
8GB if Enterprise;
4GB otherwise

none

5.0.2195.1620
Windows
2000 SP1

5.0.2195.5438
Windows
2000 SP3

5.0.2195.6717
Windows

2000 SP4

5.1.2600.0 Windows XP

64GB if Datacenter

without 4GT;
16GB if Datacenter

with 4GT;
32GB if Enterprise;

2GB if Blade;
4GB otherwise

none
5.1.2600.1106

Windows XP
SP1

5.1.2600.2180
Windows XP
SP2

16GB if Datacenter with
4GT;

none if Datacenter without
4GT;
none if Enterprise or

Blade;
4GB otherwise

5.1.2600.5512
Windows XP
SP3

5.2.3790.0
Windows
Server 2003

128GB if
Datacenter without

4GT;
32GB if Enterprise

without 4GT;
16GB if Datacenter
or Enterprise with

4GT;
2GB if Blade;

16GB if Datacenter or

Enterprise with 4GT;
128GB otherwise

http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/ex/exinit/productsuite.htm
http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_9

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

4GB otherwise

5.2.3790.1830

Windows

Server 2003
SP1

2GB if Blade;

128GB if
Datacenter without
4GT;

64GB if Enterprise
without 4GT;

16GB if Datacenter
or Enterprise with

4GT;
4GB otherwise

128GB if Blade;
128GB if Datacenter,
Enterprise or Terminal

Server without 4GT;
16GB if Datacenter,

Enterprise or Terminal
Server with 4GT;

4GB otherwise

5.2.3790.3959

Windows

Server 2003
SP2

Note that for nearly 5 years, i.e., from Windows 2000 up to but not including
Windows XP SP2, Microsoft did not actually prohibit the use of memory
above 4GB by any editions of its current Windows product, whether for

servers or clients. Perhaps those incompatible drivers hadn’t been noticed
yet.

Windows XP SP2

Special mention must be made of Windows XP SP2 and SP3. If you were
fortunate enough to have 4GB in a machine for running a client version of

Windows up to and including Windows XP SP1, and your hardware had
memory remapping so that some of your 4GB was above the 4GB address,
and your third-party drivers worked with memory above 4GB, then you will

have faced an unfortunate side-effect when upgrading to Windows XP SP2:
you will have bought a downgrade of how much RAM Microsoft permits you

to use. How well did Microsoft disclose this side-effect in advance?

It was disclosed eventually. The Knowledge Base article The amount of
RAM reported by the System Properties dialog box and the System

Information tool is less than you expect after you install Windows XP Service
Pack 2 reports that enabling PAE in Windows XP SP2 does not allow the use

of memory above 4GB. It also talks of changes to the HAL. What actually
was changed so strains credibility that I had to be goaded into studying it.

As much as anyone talks of 32-bit drivers that simply assume a 32-bit
physical address space, it will forever remain that the extreme example of
such an assumption is what Microsoft itself coded into the HAL for Windows

XP SP2.

Where the Knowledge Base article talks of “unlimited map registers”, what it
means is that the HAL itself assumes double buffering is never required for

any DMA operations on a device that can handle 32-bit physical

http://support.microsoft.com/kb/888137
http://support.microsoft.com/kb/888137
http://support.microsoft.com/kb/888137
http://support.microsoft.com/kb/888137

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

addresses.10 In other words, having seen that some 32-bit drivers assume
all physical addresses fit 32 bits and thereby think to escape some coding

obligations regarding double buffering for their 32-bit device, Microsoft
deliberately adopted the same faulty assumption into the HAL, i.e., into
arguably the second most critical executable in all of Windows. A company

that can do such a thing is clearly not thinking primarily of its product’s
technical integrity.

Future

It seems unlikely that Microsoft means to remove (or even change) the

license limits on memory use by 32-bit Windows Vista any time soon. For
the opportunity provided by the first service pack, Microsoft instead decided

to play games with how the amount of physical memory is reported. In
several places where earlier Windows versions report the amount of RAM
that the kernel recognises as usable, Windows Vista SP1 instead reports the

total amount of RAM that is installed. For instance, if the original Windows
Vista sees only 3069MB of RAM on your machine that has 8GB installed,

then the System Properties in Windows Vista SP1 will likely say that you
have 8.00GB of RAM. This does not mean, of course, that Windows Vista SP1

actually regards 8GB as usable. RAM that is overridden for hardware support
is as lost to Windows Vista SP1 as to the original. RAM in excess of the

license limits is discarded by Windows Vista SP1 as by the original. Windows
Vista SP1 just doesn’t let these losses show as obviously.

Microsoft does acknowledge this “reporting change” in an article Windows

Vista SP1 includes reporting of Installed System Memory (RAM). The title is
more accurate than might be understood at first glance: reporting the
amount of installed system memory is newly coded as an application-level

programming feature in the form of a new Windows API function, named
GetPhysicallyInstalledSystemMemory, and several programs that are

supplied with Windows Vista SP1 use this new feature. Only one, the System
Information program (MSINFO32.EXE), is known to contrast the amount of

installed RAM with the amount that the operating system believes is usable.

If you’re reasonably sharp-eyed, you should be wondering if I can be correct
where I say, some distance above, that the kernel discards memory in

excess of the license values, such that the memory may as well never have
been discovered by the loader from the firmware. If the kernel truly does

lose all knowledge of the discarded memory, then how is this memory’s
existence found by the new function? The answer is of course that the report

of installed memory is not obtained directly from the kernel. The kernel’s
only involvement is in fetching the raw SMBIOS firmware table, which is

http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_10
http://support.microsoft.com/kb/946003
http://support.microsoft.com/kb/946003

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

then interpreted at application level to discover the amount of installed
memory. The SMBIOS table tells such things as that the system board has 8

memory chips at 1GB each. It doesn’t tell anything about how (or if) that
RAM is addressable, let alone how much of it is usable by Windows.

When running on earlier Windows versions, programs that want to discover

the amount of installed RAM can do their own interpretation of the SMBIOS
table, having got it by calling GetSystemFirmwareTable. When running on
much earlier Windows versions, there is perhaps no better way than to

query Windows Management Instrumentation (WMI) for its knowledge of the
SMBIOS table, which is hardly a trivial exercise.11 That such mucking

around for one seemingly simple piece of data is now made as easy as
calling one API function is very welcome. It’s sadly typical that Microsoft

didn’t implement it as a programming feature of its operating system until
Microsoft needed it for Microsoft’s purposes. It’s a pity that those purposes

in this particular case have an element of disguise.

Of course, there’s a very good argument that the amount of RAM shown in
the System Properties ought all along to have been the amount installed.

But it hasn’t been all along, and to change it now, just as increasingly many
users see the amount shown and wonder why it is so much less than the
amount they know to be installed, looks like sharp practice.

Microsoft finally attended to this in Windows 7, which has the System
Properties show the amount installed but follow it with the backwards-
compatible report of what’s usable.

Windows Server 2008

Perhaps you think that because Microsoft is the only true authority on its

own software, there remains some scope for technical issues to explain the
prevention of 32-bit Windows Vista from using memory above 4GB. After all,
Microsoft’s kernel-mode programmers are surely among the best and

brightest and they have access to the source code. How can anyone outside
Microsoft be truly certain what code is in Windows? For instance, could it be

that although the kernel for 32-bit Windows Vista has some code for using
memory above 4GB, it does not have the complete code? Or could it be that

the code in 32-bit Windows Vista was merely in transition from Windows
Server 2003 to Windows Server 2008 and does not work entirely correctly?

Only Microsoft can know.

To some extent, you would be right, but then I say to you: consider
Windows Server 2008. For the loader and kernel in Windows Vista SP1 (and,

by the way, for the overwhelming majority of all executables), the

http://www.geoffchappell.com/notes/windows/license/memory.htm#Ftn_11

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

corresponding executable in Windows Server 2008 is exactly the same, byte
for byte. Yet Microsoft sells 32-bit Windows Server 2008 for use with as

much as 64GB of memory. Does Microsoft really mean to say that when it
re-badges these same executables as Windows Vista SP1, they suddenly
acquire an architectural limit of 4GB? Or is it that a driver for Windows

Server 2008 is safe for using with memory above 4GB as long as you don’t
let it interact with the identical executables from Windows Vista SP1?

Summary

Microsoft has always limited the amount of memory that Windows will use.

Different Windows products have different limits. For 32-bit Windows Vista,
the limit of 4GB is unarguably coded as a licensing issue but Microsoft does

not say this explicitly in the supposed License Agreement (or anywhere
else).

This has not been a problem for consumers until recently because the

license limit of 4GB for client editions of Windows, such as Windows XP and
Windows Vista, permitted the use of far more memory than many
consumers ever thought to dream about. Even now that machines with 4GB

of RAM are no rarity, many consumers (including me) typically don’t run
enough memory-hungry programs to be using more than one or two

gigabytes in total. Yet clearly the day is not far off that 4GB will be a typical
installation. Software will inevitably grow to use what’s there. Soon,

machines with more than 4GB will not be regarded as monsters.

A perception has developed, and even become widespread, that exceeding
4GB requires a mass migration to 64-bit Windows. At best, this perception

misunderstands both the design of Intel’s processors and a decade-old
development in 32-bit Windows. Although Microsoft itself seems never to say

explicitly that 4GB is a barrier for 32-bit Windows in general, Microsoft does
say that 32-bit Windows Vista in particular is incapable of using 4GB and
that the workaround necessarily includes using 64-bit Windows Vista

instead.

The mechanism by which 32-bit Windows Vista is incapable of using memory

above 4GB is simply that Microsoft does not license it to use memory above
4GB. The code to use memory above 4GB is already present in the product
as shipped. Microsoft just doesn’t license you to use it. Microsoft seems

never to say explicitly that this is the mechanism.

Microsoft does say that memory use by 32-bit Windows Vista is limited “to
avoid potential driver compatibility issues” but the arguments are weak,

4 or 8 GB RAM on 32 bit – Prince NRVL 2010

www.nrvl.weebly.com

M
a

r
c

h
 1

6
,

 2
0

1
0

especially for new computers with new hardware and new drivers. Moreover,
Microsoft does not open its arguments to independent testing, given that the

license values are protected from being tampered with. Even for machines
on which the incompatibilities are real, they would be avoidable through
configurable options that exist anyway. That they must be avoided (or even

are better avoided) through the licensing mechanism is again not something
that Microsoft seems to have explained anywhere.

A suspicion seems reasonable that Microsoft is at least content to have the

mass market perceive 4GB as an architectural limit to 32-bit Windows, so
that the inevitable increase in the amount of RAM fitted to a typical

computer will itself move the consumer base to 64-bit Windows and thence
to the 64-bit applications that users will quickly see as natural purchases for

their 64-bit operating system. There are, of course, very good reasons to
migrate to 64-bit Windows, but the change should be assessed on its merits,

not taken as necessary because staying with 32-bit Windows is closed off as
an option. Imposing an artificial limit at an amount of memory that
conveniently coincides with a widely believed myth has the look of a

marketing ruse to bring forward the migration to 64 bits without fully-
informed assessment. Microsoft certainly has not informed, and the rest of

the industry has not questioned how and why 32-bit Windows Vista is
constrained to ignore memory above 4GB. This is an abuse that consumers

should not have to tolerate. Someone with authority over Microsoft ought
investigate whether Microsoft’s descriptions of 32-bit Windows Vista as being

incapable of using memory above 4GB are misleading or illegal.

Thanksi

i
 Geoff Chappell - Software Analyst

A Prince NRVL presentation.
Neo Reconia Sys© – 2010. All Rights Reserved.

